On claw-free strictly Deza graphs

Anastasiya Mityanina

Chelyabinsk State University, Russia

This is joint work with Vladislav V. Kabanov

Novosibirsk 2016

Definitions

Definition. Let $v, \ k, \ b$ and a be integers such that $0 \le a \le b \le k < v$. A graph G is a $Deza\ graph$ with parameters (v,k,b,a) if

- G has exactly v vertices;
- for any vertex u in G its neighbourhood N(u) has exactly k vertices;
- for any two distinct vertices u, w in G the intersection $N(u) \cap N(w)$ takes on one of two values b and a.

Definition. A *strictly Deza graph* is a Deza graph of diameter 2 that is not strongly regular.

Definition. The *inflation* of a graph G is line graph of such graph which obtained from G by replacing each edge by path of length G.

Definitions

Definition. A star S_k is the complete bipartite graph $K_{1,k}$. A star with k=3 is called a *claw*.

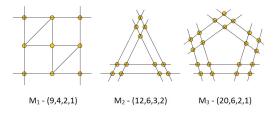
Definition. A *claw-free graph* is a graph that does not have a claw as an induced subgraph.

Definition. The *line graph* of a graph G is another graph L(G) that represents the adjacencies between edges of G.

Previous results

Theorem 1. A graph G is strictly Deza line graph if and only if it is

- the $4 \times n$ lattice graph, where n > 1 and $n \neq 4$ or
- one of the graphs M_1 , M_2 or M_3 .



Theorem 2. Let G be a connected claw-free Deza graph with diameter greater than 2. Then G is one of that graphs:

- the inflation of cubic graph;
- line graph of triangle-free cubic graph;
- n-gon, where $n \ge 6$;
- the icosahedron.

Previous results and Main aim

Theorem 3. Let G be a strictly Deza graph, and there are following conditions:

- \bigcirc G is a claw-free graph;
- 2 G contain 3-coclique;
- **3** G is a union of closed neighborhoods of two nonadjacent vertices; then G is Deza graph with parameters (9,4,2,1) or (12,6,3,2).

Main aim - classification of claw-free Deza graphs with 3-coclique

Consolidated result

Maria Chudnovsky and Paul Seymour "The structure of claw-free graphs" (November 2005)

Theorem. Let G be claw-free and connected. Then either

- $G \in S_0 \cup ... \cup S_6$, or
- ullet G admit either a homogeneous pair of cliques, a 1-join, a generalized 2-join, or a hex-join, or
- G is antiprismatic.

Conclusion:

- theorem is not convenient to use, especially for graphs with regularity conditions
- there are description (not construction) for some classes

Used articles

[1] V.V. Kabanov, Siberian Mathematical Journal, 1998, Volume 39, Issue 5, pp 908–912

Description of connected claw-free graphs which contains a 3-coclique and every μ -graph has radius greater than 1.

[2] V.V. Kabanov, A.A. Makhnev, Mathematical Notes, 1996, Volume 60, Issue 4, pp 372–377

Description of claw-free coedge regular graphs.

[3] A.A. Makhnev, Mathematical Notes, 1988, Volume 63, Issue 3, pp 357–362

Description of connected reduced claw-free graphs containing a 3-coclique, and all of whose μ -subgraphs are regular of valency $\alpha>0$.

Main result.

Theorem. Let G be a $K_{1,3}$ -free strictly Deza graphs, and any two of its non-adjacent vertices belong to 3-coclique. Then G is one of that graphs:

- 1. the $4 \times n$ -lattice, where n > 2, $n \neq 4$;
- 2. the 2-extension of 3×3 -lattice;
- 3. line (20, 6, 2, 1)-Deza graph.

Proof

Lemma 1. Let graph G satisfies all conditions of the theorem and every μ -subgraph has radius greater than 1. Than G is one of following graphs:

- the $4 \times n$ -lattice, where n > 2, $n \neq 4$;
- the 2-extension of 3×3 -lattice.

Lemma 2. Let graph G satisfies all conditions of the theorem and is a coedge regular graphs. Then G is one of the cases from the conclusion of the lemma 1.

Further, we assume that there is a μ -subgraph with radius 1 and there are μ -subgraphs both size a and b.

Proof

Let γ and δ are vertexes of G such that $\gamma\nsim\delta$ and μ -subgraphs $\gamma\cap\delta$ has radius 1.

Let vertex $\varepsilon \in \gamma \cap \delta$ be adjacent with all vertexes in μ -subgraphs.

Introduce notations:

- $y = |[\gamma] \cap [\varepsilon]|;$
- $z = |[\delta] \cap [\varepsilon]|;$
- $\bullet \ \ x=|[\gamma]\cap [\delta]\cap [\varepsilon]|.$

Proof. Possible cases

If
$$|\gamma \cap \delta| = a$$
, than $x = a - 1$

- If u = z = a than k = a + 3
- If y = a, z = b than k = b + 3
- If y=z=b than k=2b-a+3

If
$$|\gamma \cap \delta| = b$$
, than $x = b - 1$

- If y = z = a than k = 2a b + 3
- If y = a, z = b than k = a + 3
- If y=z=b than k=b+3

Proof. Possible cases

Lemma 3. Let k=a+3 than there is no appropriate parameters (v,k,b,a) for G.

Lemma 4. Let k=2a-b+3 than there is no appropriate parameters (v,k,b,a) for G.

Lemma 5. Let k=b+3 than there is no appropriate parameters (v,k,b,a) for G.

Lemma 6. Let k=2b-a+3 than G is (20,6,2,1)-Deza graph.

Thank you for attention!